Math 564: Real analysis and measure theory Lecture 13

Measure isomorphism theorem. Every atomless Bord probability measure μ on a Polish space X is isomorphic to ([0,1],X). In fact, there is a Bord isomorphism $f:X\Rightarrow [0,1]$ with $f_{\#}\mu=\lambda$. Pool Because X is atomless, each singleton is μ -null, so X must be until since otherwise $\mu(X)=0$. By the Bord isomorphism theorem, there is a Bord isomorphism $g:X\to [0,1]$, so by replicing X with [0,1] and μ with $g_{\#}\mu$, we may assure that X=[0,1] and μ is a atomless Bord peob. neas. on [0,1]. E.g. take $\mu|_{[0,\frac{1}{4}]}=0$ and $\mu|_{[\frac{1}{4},1]}=\frac{1}{2}d\cdot\lambda|_{[\frac{1}{4},1]}$. Let $f:[0,1]\to [0,1]$ by deficed by $x\mapsto \mu([0,x])$. This is an increasing (maybe not strictly) and continuous; indeed it is right continuous becase of downered monotone convergence $(\mu|_{[0,x]})=\lambda$ in $\mu([0,x])=\lambda$ and left continuous becase of upcared monotone convergence and atomlessness $(\mu|_{[0,x]})=\mu([0,x])=\lambda$ in $\mu([0,x])=\mu([0,x])$. Furthermore, $f^{-1}([0,y])=\{0,x\}$ here $\mu([0,x])=y$ and his $x\to i$ maximum such, so

Since the cetes 10,43 generate the Borel oraly, the necessres & and fix wincide. It remains to show that f is a bijection on a concell set. f is not bijective became it there night be intervals [a, b] on which f is constant, but then $\mu((a,b)) = 0$ and there are only of by may such maximal intervals because these are pairwise disjoint and 10,13 is separable. So the union Z of all these maximal intervals (a, b) is still p-null and flx $z : X \ge 50$, is a bijection.

Cor. Every or-finite Bond measure pron a Polish space X is isomorphic to (IR, X).

Proof. Write X as a Mbl disjoint union of finite positive necesure pieces and use that each is isomorphic to an interval in IR. Details left as an exercise.

Det. A neasure space (X, B, p) is called standard if p is r-ficte and (X, B) is standard Borel.

kenack. In dynamics and probability theory, one nainly works with standard probability space (since we know that the atomless ones are all isomorphic).

We can restate:

Theorem. A standard atoulers intinite necessre spece is isomorphic to (IR, X) and a standard atoulers prob. necessre spece is isomorphic to (50,17, 1).

Integration

Given a masurable space (X, B), we denote $L := L(X, B) := \text{the set of all } B\text{-measurable functions } X \to I[X := Loo, \infty].$ [+:=[(X,B):= \FEL(X,B): +>0],

Note Mt L(K, B) is a vector space and Lt(X, B) is dosed under non-negative linear combination. Both are closed under products and limits.

Def. An integral on $L^{\dagger}(X, B)$ is a cloby additive linear factional $I: L^{\dagger} \rightarrow 50$, ∞J , i.e.

(i) $I(d-f+g-g) = d-I(f)+f\cdot I(g)$ for all d, p > 0 and $f, g \in L^{\dagger}$. (i) I (> fa) = E I (fa).

Observation. Every integral I on $L^{\dagger}(K, \infty)$ defines a measure μ on (K, ∞) by: $\mu_{\mathbf{I}}(B) := \overline{L}(\mathbf{1}_{B}).$

Proof Julied, $\mu(0) = I(I_0) = I(0) = 0$ and if $B = \bigcup B_n$, here $I_B = \sum_{n \in \mathbb{N}} I_{B_n}$, so $\mu(B) = I(I_B) = I(\sum_{n \in \mathbb{N}} I_{B_n}) = \sum_{n \in \mathbb{N}} I(I_{B_n}) = \sum_{n$

We would like he solve the inverse poblem, indeed we will prove: Theorem. Every necessre μ on $\{X, B\}$ admits an integral $I: (f(X, B) \rightarrow C_0, \infty]$ s.f. $\mu = \mu$.
This I is called be integral over μ , denoted $\int f d\mu := \int f(x) d\mu(x) := I(F)$. In the rentiting live we will prove this theorem by gradually deficing this I. Remark. Due I is defined on t, we will be able to also define it on a subspace of L(X,B) using the Each Mut for each $f \in L(X,B)$, $f = f_{+} - f_{-},$ where $f(x) := (-f(x)) \text{ if } f(x) \ge 0$ on o.w. Det. A facilion f E L(X, B) is called simple if it is a finite linear combinationatoon of indicator functions of sets from B, So woundgative simple functions are The nonnegative linear comprinctions of indicator functions. Denote by S(x, &) lasp. St(X,B) he subspace of simple lossp. nonnegative simple) functions. Note that a nonnegative simple fautier of it of the torn f = \(\sigma\) d; \(\sigma\), A; \(\sigma\), \(\sigma\) is a standard one:

It has many representations but there is a standard one: Dosecvation. A fandron Folk, B) is simple <=> f(x) is fixite. Def. For a simple further f with $f(k) = \{d_0, d_1, ..., d_{n-1}\}$, the representation $f = \sum_{i < n} d_i \, 1_{f^{-i}(x_i)}$ is called standard.

In particular $X = \bigcup_{i < n} f^{\tau}(d_i)$.

Dot biven a nearer por (k, B), we defice its integral on $S^+(k, B)$ by setting for each $F \in S^+(k, B)$, (+) Stdp := \(\frac{1}{2} \dip(A_{\infty}), Nea f= Zdi 1A; in come represendation of J. It is an exercise HD to show that this is cell-deficed lie. doesn't depard on the representation). Remark. We could afterwatively define the integral for the standard representation and then prove that (*) holds for any representation. Prop. The totaglal on St schesties the following: (i) linearity: [(Af+ Bg) dp = d. [fdf + B]gdp. (i) Nonregativity: +20=> |fdp20. Equiv: f<g >> |fdp \le \gamma gdp. (iii) (fdy = 0 => f = 0 a.e. (iv) Each FESt defines a neasure 1 on (X, B) by $h^{\mathsf{t}}(\mathsf{B}) := \mathcal{I}(\mathsf{I}^{\mathsf{B}} \cdot \mathsf{b}) \, \mathsf{gh} = \mathcal{I}^{\mathsf{b}} \, \mathsf{gh}$ Proof (i) - (iii) tollow by definition, and we pove (iv). (i) implies up (10) = 0, so we verify Abl additivity. Let B= UB, , so 1B= ZIBn. Let f= Zdi 1A: h (B) = \land 1 B. f dp = \land \int di 1 Ains dp = \land in (Ains) = \land in di \mathreat \land in \mathre

= $\sum_{u \in N} \sum_{i \in u} \mu(A_i \cap B_u) = \sum_{u \in N} \int (1_{B_u} \cdot f) d\mu = \sum_{u \in u} \int \mu(B_u).$